
MCPA-Level-1

MCPA-Level-1 Dumps
MCPA-Level-1 Braindumps
MCPA-Level-1 Real Questions
MCPA-Level-1 Practice Test
MCPA-Level-1 Actual Questions

killexams.com

MuleSoft

MuleSoft Certified Platform Architect I

https://killexams.com/pass4sure/exam-detail/MCPA-Level-1

https://killexams.com/exam-price-comparison/MCPA-Level-1


Question: 459 

If a client application requires data from multiple APIs and needs to aggregate that data into a single
response, which Anypoint Platform feature would facilitate this type of data transformation and
aggregation?

A. API Manager
B. Anypoint Design Center
C. Anypoint Exchange
D. Anypoint Runtime Manager

Answer: B

Explanation: Anypoint Design Center enables developers to design APIs that can perform data
transformation and aggregation, allowing a client application to receive a single, cohesive response.

Question: 460 

While working with CloudHub, you notice that your application's performance is degrading during peak
times. What is the most effective way to address this issue without significant downtime?

A. Restart the application to clear cached data.
B. Disable unnecessary connectors to free up resources.
C. Reduce the number of concurrent requests by implementing throttling.
D. Scale up the worker size temporarily to handle the increased load.

Answer: D

Explanation: Scaling up the worker size temporarily during peak times allows the application to handle
increased load without significant downtime, ensuring better performance without needing to stop the
application.

Question: 461 

In a project where different teams are consuming a shared API, what strategy should you employ to
ensure that the API documentation is always up to date and accurately reflects the latest changes in the
API implementation?

A. Manually update the documentation every time changes are made.
B. Rely on team communication to inform about changes.



C. Require teams to submit documentation updates as part of their deployment process.
D. Use a tool that automatically generates documentation from the API specifications.

Answer: D

Explanation: Using a tool that automatically generates documentation from the API specifications ensures
that the documentation is always up to date and accurately reflects the API implementation, reducing the
risk of discrepancies.

Question: 462 

In a scenario where a financial API needs to protect against replay attacks, which strategy should be
implemented to ensure that previously captured tokens cannot be reused?

A. Use long-lived access tokens
B. Include timestamps and nonces in tokens
C. Rely on client-side validation
D. Allow unlimited token reuse

Answer: B

Explanation: Including timestamps and nonces in tokens ensures that each token is unique and can only
be used once, effectively preventing replay attacks.

Question: 463 

What is the primary function of using "traits" in RAML when designing an API that requires consistent
security measures across multiple endpoints?

A. To define unique traits for each endpoint
B. To limit access to only specific client applications
C. To centralize the definition of security schemes for reuse
D. To create documentation for each endpoint

Answer: C

Explanation: Traits allow for the centralization of security definitions, ensuring consistent application of
security measures across multiple endpoints.

Question: 464 



During a performance review, you are tasked with identifying opportunities for optimization in your API.
Which of the following practices should you consider implementing based on the insights gathered from
Anypoint Platform analytics?

A. All of the above.
B. Refactoring the API to reduce payload size.
C. Deploying additional caching mechanisms.
D. Increasing the number of API instances.

Answer: A

Explanation: Each of these practices can contribute to better API performance and efficiency based on
insights from analytics.

Question: 465 

Which of the following is a potential challenge that organizations might face when implementing API-led
connectivity?

A. Simplified user experience with no need for custom front-end development.
B. A significant reduction in the number of APIs needed for integration.
C. Enhanced security due to layered architecture.
D. Increased interdependence among APIs leading to potential bottlenecks.

Answer: D

Explanation: Increased interdependence among APIs can lead to bottlenecks if not managed properly, as
changes in one API can impact others.

Question: 466 

When implementing API security measures, what is the most effective way to protect against SQL
injection attacks in an API that interacts with a database?

A. Rely on the database's default security settings
B. Use ORM frameworks exclusively
C. Validate all input data
D. Use prepared statements or parameterized queries

Answer: D



Explanation: Prepared statements or parameterized queries ensure that user input is treated as data and
not executable code, effectively preventing SQL injection attacks.

Question: 467 

You are implementing a new version of an API, and you need to ensure that existing consumers can still
access the previous version without disruption. What is the best approach to manage this versioning?

A. Simply change the API endpoint to the new version without any additional configuration.
B. Deprecate the old version immediately upon releasing the new version.
C. Use URI versioning and keep both versions available in the developer portal.
D. Only inform developers about the new version and remove the old version after six months.

Answer: C

Explanation: Using URI versioning allows you to maintain both versions of the API simultaneously,
providing consumers with the flexibility to migrate to the new version at their own pace.

Question: 468 

During the API lifecycle management process, what is the primary purpose of conducting an API audit?

A. To identify potential market opportunities for new APIs
B. To assess the performance metrics of existing APIs
C. To ensure compliance with organizational policies and standards
D. To prepare documentation for future API consumers

Answer: C

Explanation: Conducting an API audit is primarily aimed at ensuring compliance with organizational
policies and standards, identifying any areas where APIs may not meet governance requirements.

Question: 469 

To protect your API from unwanted traffic and potential denial-of-service attacks, you decide to
implement throttling. What is the primary difference between rate limiting and throttling?

A. Rate limiting restricts the number of requests from a user over time, while throttling controls the speed
of requests.
B. Rate limiting is applied globally, while throttling is user-specific.



C. Rate limiting is only for unauthenticated users, while throttling applies to all users.
D. Rate limiting allows unlimited requests, while throttling restricts to one request per minute.

Answer: A

Explanation: Rate limiting restricts the number of requests a user can make over a defined period, while
throttling controls the rate at which requests are processed, ensuring smoother operation under load.

Question: 470 

You are integrating a new messaging service into your existing architecture, and you need to ensure that
messages are processed reliably, even in the event of failures. What design pattern should you implement
to achieve this?

A. Fire-and-forget pattern.
B. Retry pattern combined with a dead-letter queue.
C. Competing consumers pattern.
D. Publish-subscribe pattern without acknowledgment.

Answer: B

Explanation: Implementing a retry pattern combined with a dead-letter queue ensures that messages are
processed reliably, allowing for retries in case of failures and providing a mechanism to handle
undeliverable messages.

Question: 471 

In the context of RAML, which of the following best describes the significance of annotations in API
design?

A. They provide a way to document API endpoints and their behavior.
B. They are used to define the API's security protocols.
C. They specify the response formats for each endpoint.
D. They enforce data validation rules on request bodies.

Answer: A

Explanation: Annotations in RAML serve as a means to document the API's endpoints and their
behavior, enhancing the clarity and usability of the API documentation for developers.



Question: 472 

In reviewing your API's traffic reports, you notice a 50% increase in usage after a marketing campaign.
Which strategy could you implement to ensure the API can handle this increased load without degrading
performance?

A. Scale up resources based on estimated load.
B. Both A and C.
C. Review and optimize the API's code for efficiency.
D. Implement strict rate limiting for all users.

Answer: B

Explanation: Scaling resources and optimizing code are both essential strategies to ensure the API can
handle increased load effectively.

Question: 473 

If a company is attempting to implement real-time monitoring of their deployed APIs and applications,
which component of the Anypoint Platform would be best suited to provide this capability?

A. Anypoint Exchange
B. Anypoint Runtime Manager
C. Anypoint Design Center
D. CloudHub

Answer: B

Explanation: Anypoint Runtime Manager provides real-time monitoring capabilities for deployed APIs
and applications, allowing organizations to track their performance continuously.

Question: 474 

You are developing an API that requires data to be transformed based on user preferences. How can you
implement this transformation in a way that allows for flexibility and scalability?

A. Hard-code transformation logic into the API.
B. Implement a separate API for each transformation requirement.
C. Use configurable transformation templates that can be adjusted without changing the API code.
D. Rely on client-side transformations to reduce server load.

Answer: C



Explanation: Using configurable transformation templates allows for flexibility and scalability, enabling
adjustments based on user preferences without requiring changes to the API code itself.

Question: 475 

In a scenario where a company needs to secure its APIs against unauthorized access, which combination
of authentication methods would provide the highest level of security while maintaining usability for
third-party developers?

A. Basic Authentication and IP Whitelisting
B. OAuth 2.0 with JWT and Client Credentials Grant
C. API Key and Basic Authentication
D. OAuth 1.0 and Basic Authentication

Answer: B

Explanation: OAuth 2.0 with JWT provides a robust framework for access delegation and token-based
authentication, allowing third-party developers to securely access APIs without exposing user credentials.
The Client Credentials Grant is suitable for server-to-server communication, enhancing security.

Question: 476 

You are designing an API that requires a robust versioning strategy to accommodate future changes
without disrupting existing consumers. What is a best practice to follow when implementing versioning?

A. Use query parameters to specify the version of the API.
B. Change the API version in the headers for all requests.
C. Only document the latest version and deprecate all old versions.
D. Use a version number in the URI path of the API.

Answer: D

Explanation: Using a version number in the URI path of the API is a widely accepted best practice that
allows clear differentiation between versions and ensures that existing consumers can continue using
older versions without disruption.

Question: 477 

A company is facing issues with API abuse, leading to performance degradation. What is the most



effective policy they can implement to mitigate this problem?

A. Increase the number of API endpoints available
B. Encourage users to report any performance issues
C. Implement rate limiting and throttling policies
D. Reduce the number of users accessing the API

Answer: C

Explanation: Implementing rate limiting and throttling policies directly addresses API abuse by
controlling the volume of requests from individual users, preserving overall performance.

Question: 478 

You are working in Anypoint Design Center and need to document an API that uses multiple
authentication methods. What is the best approach to document these methods clearly?

A. Document each authentication method separately, detailing how to implement them.
B. Provide a general overview of authentication types without specifics.
C. Only document the most secure authentication method.
D. Use a table format to compare authentication methods side by side.

Answer: A

Explanation: Documenting each authentication method separately with detailed implementation
instructions provides clarity and ensures that developers understand how to use each method effectively.

Question: 479 

In a scenario where an organization needs to integrate multiple APIs and microservices while ensuring
that different development teams can collaborate effectively, which Anypoint Platform component would
provide a centralized repository for API specifications and reusable assets?

A. Anypoint Runtime Manager
B. CloudHub
C. Anypoint Design Center
D. Anypoint Exchange

Answer: D

Explanation: Anypoint Exchange serves as a centralized repository for APIs, connectors, templates, and
other reusable assets, facilitating collaboration among different development teams.



Question: 480 

When deploying an application that requires auto-scaling and multi-tenancy in a cloud environment,
which component of the Anypoint Platform would be the most appropriate choice for hosting this
application?

A. Anypoint Design Center
B. Anypoint Exchange
C. Anypoint Runtime Manager
D. CloudHub

Answer: D

Explanation: CloudHub is designed for hosting applications in a cloud environment with features like
auto-scaling and multi-tenancy, making it ideal for such deployment scenarios.

Question: 481 

An API is vulnerable to Cross-Site Scripting (XSS) attacks. Which measure would be most effective in
mitigating this risk?

A. Implementing CORS policies
B. Using HTTPS for secure transmission
C. Escaping user input before rendering
D. Enforcing strict content security policies

Answer: C

Explanation: Escaping user input before rendering helps prevent XSS attacks by ensuring that untrusted
data is treated as text and not executable code, thus mitigating the risk.

Question: 482 

When defining an API strategy, which of the following elements would be considered least relevant to
the strategy's success in terms of aligning technical and business objectives?

A. Business Use Cases
B. API Performance Metrics
C. Technical Stack Choices



D. Personal Preferences of API Developers

Answer: D

Explanation: Personal preferences of API developers are least relevant compared to business use cases,
performance metrics, and technical stack choices, which directly impact the strategy’s alignment with
organizational goals.

Question: 483 

When implementing pagination in a RESTful API, which of the following methods is considered the
most RESTful practice?

A. Returning all records in one response and using client-side pagination.
B. Including a next link in the response to guide clients to retrieve subsequent pages.
C. Providing a separate endpoint for each possible page of results.
D. Using query parameters like page and limit to control the number of records returned.

Answer: D

Explanation: Using query parameters like page and limit to control the number of records returned is
considered a RESTful practice, allowing clients to request specific subsets of data efficiently.

Question: 484 

In a scenario where your API needs to communicate with several microservices, you decide to use API
keys for authentication. How can you minimize the risk of API key leakage in such an architecture?

A. Store API keys directly in the source code repository
B. Use a secrets management tool to store and access API keys
C. Share API keys via unsecured channels for ease of access
D. Limit API key usage to local development environments only

Answer: B

Explanation: Using a secrets management tool allows you to securely store and access API keys,
minimizing the risk of leakage by keeping them out of source code and unsecured communication
channels.

Question: 485 



In a scenario where your API needs to support both synchronous and asynchronous communication with
clients, what design approach should you take to accommodate both types of interactions efficiently?

A. Create separate APIs for synchronous and asynchronous interactions.
B. Implement a single API that handles both types of interactions through different endpoints.
C. Use a messaging system for asynchronous interactions only.
D. Rely on HTTP calls for both types without differentiation.

Answer: B

Explanation: Implementing a single API that handles both synchronous and asynchronous interactions
through different endpoints allows for efficient management of client requests while maintaining a unified
interface.



KILLEXAMS.COM

https://killexams.com/search



